шjec
cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics - M2 0981/01

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - M2

Summer 2016 Mark Scheme

Q
Solution

$$
\text { 1(a). } \begin{aligned}
x & =\int 12 t^{2}-7 k t+1 \mathrm{~d} t \\
x & =4 t^{3}-\frac{7 k}{2} t^{2}+t+(C) \\
t & =0, x=3 \\
C & =3 \\
x & =4 t^{3}-\frac{7 k}{2} t^{2}+t+3 \\
t= & 2, x=16 \\
16 & =32-14 k+2+3 \\
k & =\frac{3}{2}
\end{aligned}
$$

1(b). $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
$a=24 t-10.5$
$F=4(24 t-10.5)$
When $t=5$
$F=4(24 \times 5-10.5)$
$F=\underline{438(\mathrm{~N})}$

Mark Notes

M1 At least one power increased

A1 correct integration
m1 use of initial conditions
m1 values substituted

A1 cao

M1 At least one power decreased
A1 correct differentiation $\mathrm{ft} k$. accept k
m1 $4 \mathrm{x} a$

A1 $\mathrm{ft} k$. -ve values A0

Q
Solution

2(a) $u_{\mathrm{H}}=24.5 \cos 30^{\circ}=(12.25 \sqrt{ } 3)$
$u_{\mathrm{V}}=24.5 \sin 30^{\circ}=$ (12.25)
$s=u t+0.5 a t^{2}, s=0, u=12.25, a=(\pm) 9.8$
$0=12.25 t-0.5 \times 9.8 \times t^{2}$
$t=\frac{12 \cdot 25}{4 \cdot 9}$
$t=2.5$

Range $=2.5 \times 12.25 \sqrt{ } 3$
Range $=53.04(\mathrm{~m})$

2(b) $v^{2}=u^{2}+2 a s, v=0, u=12.25, a=(\pm) 9.8$ $0=12.25^{2}-2 \times 9.8 \times s$ $s=\underline{7.65625}=\underline{7.66(\mathrm{~m})}$

2(c) Required speed is $24.5 \mathrm{~ms}^{-1}$ downwards at an angle of 30° to the horizontal.

Mark Notes

B1
B1
M1
A1

A1

A1 cao

M1 oe complete method
A1 $\mathrm{ft} u_{\mathrm{V}}$
A1 answers rounding to 7.7 ISW

Q
Solution

3

$$
\begin{aligned}
& \mathbf{r}=\mathbf{p}+t \mathbf{v} \\
& \mathbf{r}_{\boldsymbol{A}}=(1+2 t) \mathbf{i}+5 t \mathbf{j}-4 t \mathbf{k} \\
& \mathbf{r}_{\boldsymbol{B}}=(3+t) \mathbf{i}+3 t \mathbf{j}-5 t \mathbf{k}
\end{aligned}
$$

$\mathbf{r}_{\boldsymbol{B}}-\mathbf{r}_{A}=(2-t) \mathbf{i}-2 t \mathbf{j}-t \mathbf{k}$
$A B^{2}=x^{2}+y^{2}+z^{2}$
$A B^{2}=(2-t)^{2}+4 t^{2}+t^{2}$
$\left(A B^{2}=6 t^{2}-4 t+4\right)$

Differentiate
$\frac{\mathrm{d} A B^{2}}{\mathrm{~d} t}=2(2-t)(-1)+10 t(=12 t-4)$
$-4+2 t+10 t=0$
$t=\frac{1}{3}$
$(\text { least distance })^{2}=\left(2-\frac{1}{3}\right)^{2}+5\left(\frac{1}{3}\right)^{2}$
least distance $=\sqrt{\frac{10}{3}}=\underline{1.83(\mathrm{~m})}$

M1

M1 at least 1 power reduced
Mark Notes
cao
m1 equating to 0 .
A1 cao

Q

4(a) Conservation of momentum
$12 \times 600=1600 \times v$
$v=\frac{9}{2}\left(\mathrm{~ms}^{-1}\right)$

4(b) Energy considerations
$E=0.5 \times 12 \times 600^{2}+0.5 \times 1600 \times 4.5^{2}$
$E=2160000+16200$
$E=\underline{2176200(\mathrm{~J})}$
Energy dissipated by eg sound of cannon firing ignored.

4(c) Work-energy principle
$F \times d=E$
$F \times 1.2=16200$
$F=\underline{13500(\mathrm{~N})}$

Mark Notes

M1 dimensionally correct
A1
A1 allow -ve

M1
A1 both expressions correct, Ft v in (a)

A1 cao

E1 oe

M1 used

A1 cao

Q
Mark Notes
5. Hooke's Law

M1 used
$30=\frac{\lambda(0 \cdot 95-l)}{l}$
A1
$70=\frac{\lambda(1 \cdot 15-l)}{l}$
$\frac{70}{30}=\frac{(1.15-l)}{(0 \cdot 95-l)}$
$7(0.95-l)=3(1.15-l)$
$l=\underline{0.8}$
A1 cao
A1 cao

Q

6(a) $\mathbf{a}=\frac{\mathrm{d} v}{\mathrm{dt}}$
$\mathbf{a}=14 \cos 2 t \mathbf{i}-18 \sin 3 t \mathbf{j}$

6(b) $\quad \begin{aligned} \mathbf{r} & =\int 7 \sin 2 t \mathbf{i}+6 \cos 3 t \mathbf{j} \mathrm{~d} t \\ \mathbf{r} & =-3.5 \cos 2 t \mathbf{i}+2 \sin 3 t \mathbf{j}+(\mathbf{c})\end{aligned}$
$t=0, \mathbf{r}=0.5 \mathbf{i}+3 \mathbf{j}$
$0.5 \mathbf{i}+3 \mathbf{j}=-3.5 \mathbf{i}+\mathbf{c}$
$\mathbf{c}=4 \mathbf{i}+3 \mathbf{j}$
When $t=\frac{\pi}{2}$
$\mathbf{r}=-3.5 \cos \pi \mathbf{i}+2 \sin \frac{3}{2} \pi \mathbf{j}+4 \mathbf{i}+3 \mathbf{j}$
$\mathbf{r}=(4+3.5) \mathbf{i}+(3-2) \mathbf{j}$
$\mathbf{r}=7.5 \mathbf{i}+\mathbf{j}(\mathrm{m})$

OR

$$
\begin{aligned}
& \int_{0}^{\pi / 2} 7 \sin 2 t \mathbf{i}+6 \cos 3 t \mathbf{j} \mathrm{~d} t \\
& =[-3.5 \cos 2 t \mathbf{i}+2 \sin 3 t \mathbf{j}]^{\pi / 2} \\
& =3.5 \mathbf{i}-2 \mathbf{j}+3.5 \mathbf{i} \\
& \mathbf{r}=0.5 \mathbf{i}+3 \mathbf{j}+3.5 \mathbf{i}-2 \mathbf{j}+3.5 \mathbf{i} \\
& \mathbf{r}=\underline{7.5 \mathbf{i}+\mathbf{j}(\mathrm{m})}
\end{aligned}
$$

Mark Notes

M1 \sin to cos and coefficient multiplied A1

M1 \sin to cos and coefficient divided.
A1
m1 used
m1 substituted si
A1 cao
(M1) attempt to integrate
(A1) correct integration
(m1) correct use of limits $0, \pi / 2$
(m1) adding $0.5 \mathbf{i}+3 \mathbf{j}$
(A1) cao
7. K. Energy. at $A=0.5 \times 70 \times v^{2}$ B1
K. Energy. at $A=35 v^{2}$

Let potential energy be 0 at A
P. Energy at $B=70 \times 9.8 \times(22-20)$
mgh attempted
P. Energy at $B=70 \times 9.8 \times 2$
P. Energy at $B=1372$

Minimum K. Energy at $B=0$
WD against resistance $=50 \times 16$
B1
WD against resistance $=800$
Work-Energy Principle
$35 v^{2}=1372+800$
$v=\underline{7.88}$

M1
A1
A1
at least 3 energies ft one arithmetic slip cao

Q
Solution

8

Resolve vertically $R=m g$
$F=\mu R=0.72 \mathrm{mg}$
If particle remains at A $F \geq m a$
$0.72 m g \geq \frac{m v^{2}}{1.6}$
$v^{2} \leq 0.72 \times 9.8 \times 1.6$
$v \leq \underline{3.36}$
Greatest value of v is $\underline{3.36}$
$\omega \leq \frac{3.36}{1 \cdot 6}$
$\omega \leq \underline{2.1 \mathrm{rads}^{-1}}$
Greatest value of ω is $\underline{2.1 \mathrm{rads}^{-1}}$

Mark Notes

B1
B1 $\mathrm{ft} R$, si

M1 accept =, used, No extra force

A1 accept $=$

A1 cao, accept =

A1B1 accept $=, \mathrm{ft} v$

Q

9(a) Conservation of energy

$$
0.5 \times m \times g+m g \times 4(1-\cos \theta)
$$

$$
=0.5 \times m \times v^{2}
$$

$g+8 g(1-\cos \theta)=v^{2}$
$v^{2}=g(9-8 \cos \theta)$

9(b) N2L towards centre of motion

$$
\begin{aligned}
& m g \cos \theta-R=\frac{m v^{2}}{4} \\
& R=m g \cos \theta-\frac{m g}{4}(9-8 \cos \theta) \\
& R=\underline{3 m g(\cos \theta-0.75)}
\end{aligned}
$$

P leaves the surface when $R=0$ $\cos \theta=\underline{0.75}$
$v^{2}=g(9-8 \times 0.75)$
$v^{2}=\underline{3 g}=\underline{29.4}$

M1 KE and PE

A1 KE both sides, oe
A1 correct equation, any form
A1 cao, simplified, ISW

M1 dim correct, 3 terms, $m g \cos \theta$ and R opposing

A1
m1
A1 cao, any form ISW
M1
A1 cao

A1 cao

